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agreement of the model with observations. A remark-
able feature of the TP model is the conducting conti-
nental asthenosphere and the vertical low-resistivity
zone that branches from the asthenosphere and crosses
the continental crust in the High Cascade region. This
feature distinguishes the TP model from EMSLAB-I
and EMSLAB-II and makes it similar to the predictive
CASCADIA model; in the High Cascades, the latter
delineates a vertical high-temperature zone of wet and dry
melting that is evidently characterized by low resistivities.

Inversion of j||. At this stage, we checked the tipper
inversion results. To avoid difficulties related to near-

surface distortions of the curves ρ||, we restricted our-
selves to the inversion of the curves ϕ||, which satisfy
the dispersion relations. The TP model, obtained from
the tipper inversion, was used as a starting model. The
inversion of longitudinal phases yielded the TE model,
shown in Fig. 20c. The phase misfit (the rms deviation
of model phases from observed values) in this model is
5–10 times smaller than the phase amplitude (the dif-
ference between the maximum and minimum phase
values), indicating good agreement of the model with
observations. As distinct from the TP model, the TE
continental crust includes a better delineated conducting

Fig. 20. (Contd.)
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layer (ρ = 14–46 Ω m) in a depth interval of 35–45 km,
whereas the subvertical conducting zone (ρ = 12–46 Ω m)
in a depth interval of 45–110 km, bounded by layers
with resistivities of 147–1260 Ω m to the west and 215–
612 Ω m to the east, is localized with a higher contrast.
One may state that the TE model is an updated TP
model.

Inversion of r^ and j^. At this stage, we inverted
the TM-mode, which is less sensitive to conducting
zones in the crust and mantle but is more effective in
resolving the structure of the junction zone between
the slab and crustal conducting layer and provides
more reliable estimates of the resistivity in the upper
consolidated crust. In inverting the TM-mode, the TE
model, obtained from the inversion of phases ϕ||, was
taken as a starting model. The inversion of transverse
apparent resistivities and phases of the transverse
impedance yielded the TM model shown in Fig. 20d.
In this model, the misfits of transverse apparent
resistivities at most points vary within 6–12%, and
the phase misfits are 7–10 times smaller than the
phase amplitude (the difference between the maxi-
mum and minimum phase values). The TM model
inherits the main features of the starting TE model
(albeit with some deviations). The following impli-
cations of the TM model are noteworthy. First, no
well-conducting junction is present between the con-

ducting slab and the crustal conducting layer. Sec-
ond, the upper consolidated crust of the continent has
a resistivity of about 2000 Ω m, indicating that it is
fractured.

Note that the TM-mode inversion is essentially
dependent on the choice of the starting model. If the
START model is taken as the initial one, the TM-mode
inversion yields a model in which the continental
asthenosphere is absent. This is evidently due to the low
sensitivity of the TM-mode to deep conducting struc-
tures. In this case, active is the same mechanism that
gave rise to the model EMSLAB-I, devoid of the con-
tinental asthenosphere, in [Wannamaker et al.,
1989b].

Synthesis. At this stage, we analyzed the TP, TE,
and TM models and constructed the general EMSLAB-
III model, smoothing insignificant details and enlarging
blocks on the basis of information characterizing the
effect of individual blocks on the MVS and MTS char-
acteristics. All changes were made in an interactive
regime, with the calculation of local misfits and with
the correction of boundaries and resistivities. The
resulting general model shown in Fig. 21 provides a
coherent geoelectric image of the subduction zone. The
extent of its agreement with observed data is seen from
Fig. 22, where the model curves ρ⊥ , ρ||, ϕ⊥ , ϕ||, ReWzy,
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and ImWzy are compared with the observed curves (the
static distortion in the observed curves ρ|| was removed
by a vertical shift of their low-frequency branches). The
model curves agree well with the observed curves at the
majority of points.

In its oceanic part, the EMSLAB-III model is close
to EMSLAB-I and EMSLAB-II and exhibits a thick
oceanic asthenosphere in a depth interval of 37.5–
110 km. The structure of the continental part of
EMSLAB-III is distinguished by the following signifi-
cant elements:

a crustal conducting layer (ρ = 20 Ω m, a depth
interval of 25–40 km) and a conducting asthenosphere
(30 Ω m, 100–155 km) are distinctly resolved;

the crustal and asthenospheric conductors are con-
nected by a columnlike conducting body (20–30 Ω m)
crossing the lithosphere and reaching depths of about
7 km in the volcanic zone of the High Cascades;

the subducting slab, in a depth interval of 4–40 km
contains a thin inclined conductor (20 Ω m) separated
from the crustal conducting layer by a higher-resistivity
zone (60 Ω m); apparently, the crustal conducting layer
is unrelated to slab fluids and has a deep origin.

The reliability of these elements is supported by the
fact that the elimination of any of them noticeably
increases the model misfits.

These features of the continental section make the
EMSLAB-III and predictive CASCADIA models sim-
ilar. The fluid regime of the subduction zone is clearly
observable here. The subducting slab entraps fluid-sat-
urated low-resistivity rocks of the ocean floor. As the
slab moves down, the released free water migrates
through the shear zone (the contact zone between the
subducting oceanic and stable continental plates). The
dehydration (the release of bound water) developing in
the slab at depths of 30–40 km supplies fluids to the
mantle and causes the wet melting of asthenospheric
material. The low-resistivity melts move upward
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through the lithosphere and form a volcanic arc. The
heating of the lithosphere activates dehydration in the
lower crust, producing the crustal conducting layer.

All this confirms the validity of the predictions
underlying the CASCADIA model.

CONCLUSION

Theoretical and experimental results indicate that
the MVS method can play a significant role in the
development of geoelectric studies. Its main advantage
consists in the fact that the magnetic field distortions
caused by near-surface inhomogeneities attenuate with
decreasing frequency and do not spoil the information
on structures of the crust and upper mantle. This makes
the results of electromagnetic studies more reliable and
better constrained. The development of the MVS
method should be regarded as a promising problem of
modern geophysics.

Presently, we are at the very beginning of this
research, and many questions remain unanswered.
What is the best way to organize qualitative analysis of
MVS data that accounts most adequately for horizontal
and vertical variations in the electrical conductivity?
What is the resolution of tippers with respect to these
variations? How rapidly do the magnetovariational
near-surface effects attenuate at low frequencies? What
is the sensitivity of tippers to deep structures in the crust
and mantle? Which geoelectric conditions are favorable
for the application of the MVS method? What are the
conditions at which tippers admit a 2-D approximation
of 3-D structures? Such is the list of problems, far from
being complete, whose solution is crucial for the
progress of MVS.

Answers to many questions can be obtained with the
further accumulation of experience in studies in various
geological provinces. Here, we should emphasize that a
necessary condition for the MVS application is the
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presence of conducting inhomogeneities that play the
role of deep local sources of electromagnetic field.

The main goal of this paper was to attract the atten-
tion of geophysicists to the potentialities of the MVS
method and to problems whose solution is indispens-
able to the practical realization of these potentialities.
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